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Abstract. By introduction of non-local variables four first-order non-local symmetries are 
obtained for the Federbush model. Moreover the Lie algebraic structure of the non-local 
symmetries is discussed. 

1. Introduction 

Symmetries play an important role in the construction of solutions of partial differential 
equations in mathematical physics. Moreover they provide us with information on 
properties of solutions. The Lie algebra of infinitesimal symmetries, vector fields which 
generate parameter groups of symmetries, provides us with useful tools to construct 
classes of special solutions of the partial differential equation, obtained by reduction 
using sub-Lie algebras. This method is exploited by Winternitz et a1 [ l ,  21. 

The classical Noether theorem and its generalisations relate variational symmetries 
to conservation laws [3]. 

The concept of generalised symmetry generalises the classical notion of infinitesimal 
symmetry by requiring not only the invariance of the (system of) partial differential 
equations but the invariance of a partial differential equation together with all of its 
differential consequences. Generalised symmetries are sometimes called higher-order 
symmetries or Lie-Backlund transformations. Generalised symmetries flourish in the 
field of so-called soliton equations or integrable systems such as Kdv,  nonlinear 
Schrodinger and sine-Gordon equations, and allow the construction of multisoliton 
solutions and higher-order conservation laws. The notion of non-local symmetry based 
on taking into account integral as well as differential consequences of the partial 
differential equation has been described in an elegant way by Vinogradov and 
Krasilshchik [4], introducing the theory of coverings. 

Recent work by Bluman et a1 [ 5 ]  on this subject fits into this theory. Non-local 
symmetries led to the construction of the Cole Hopf transformation, linearising 
Burgers’ equation. The famous Lenard recursion operator for generalised symmetries 
and higher-order conservation laws of Kdv equation recursion operators and bi- 
Hamiltonian structures of soliton equations are obtained from non-local higher-order 
symmetries [ 6 ] .  The pure technical mathematical computations which are extensive, 
especially in the computations of higher-order symmetries of partial differential 
equations, motivated researchers to construct computer algebra programs to carry out 
these computations on computer systems. Schwarz [7] constructed a program which 
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deals with the determination of point symmetries of differential equations, a program 
which runs automatically in the symbolic language REDUCE. 

One of us (PHMK) constructed a program based on a description of partial 
differential equations using differential forms, being developed in such a way as to be 
used interactively, which has advantages in avoiding expression well. The program 
offers the facilities to be used in the construction of generalised and non-local sym- 
metries [8]. 

In this paper we investigate the existence of non-local higher-order symmetries of 
the Federbush model. The Federbush model describes the nonlinear interaction 
between two fermions and is given by a system of partial differential equations: 

where s = + l ,  

invariant; in terms of differential geometry [9] this amounts to 

+s,2 are complex valued functions. 
Infinitesimal symmetries are vector fields which leave the differential equation 

2 v ( I )  1 ( 1 . 1 )  

where I is a closed ideal of differential forms describing the partial equation, LTv 
denotes the Lie derivative with respect to the vector field V. In order to describe 
generalised symmetries, the notion of an infinite jet bundle [9] J"(M, N )  of M and 
N has to be introduced, where M is the space of independent variables where local 
coordinates are xi , .  . . , x m ,  and N is the space of the dependent variables where local 
coordinates are given by zl, . . . , z". In this notion the independent, dependent variables 
and all partial derivatives are considered as independent quantities. The partial 
differential equation and its differential consequences are just algebraic equations on 
the infinite jet bundle J"( M, N ) ,  where coordinates are x', . . . , x m ,  z , z , . . . , z , z ,  ,,..., 

Generalised symmetries are now described as formal vector fields on J"(M, N )  
which leave invariant the differential equation and all of its differential consequences. 
In terms of differential forms this amounts to 

1 2  n l  

z: ,...., X,k 9 * * 

&(D"Z) c D"Z (1.2a) 

whereas in (1.2) D"I is the infinite prolongation of the closed ideal I. Since the vector 
fields are supposed to be dependent only of a finite number of variables of J"( M, N )  
condition (1.2) reduces to [8] 

& ( I ) C  D'I. (1.2b) 

In a similar way we can allow non-local variables or potentials to enter as variables 
in the components of vector fields. Due to their nature equations for these potentials 
are added to the original differential equation. With these additional equations we 
can associate differential forms. Denoting 

D ' ( I ;  P I , .  * . . , P k )  

as the smallest differential ideal containing both D'( I )  and the forms associated with 
p1 , . . . , P k  then we can generalise condition (1.2) to 

Z V ( I )  D r ( t  Pt  9 . .  . , P k )  (1 .3 )  
leading to the concept of non-local symmetries V [4]. 
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In section 2 we review some of the results obtained in [ 101 and [ 113. In section 3 
we derive four non-local higher symmetries while in section 4 the Lie algebraic structure 
is discussed. 

2. Symmetries 

The Federbush Model is described by 

with s = *l. ICIs,, and I/I~.~ are analytic functions R2+@. Suppressing the factor 4 7  
(A’=4vA) and introducing the eight variables U , ,  u l ,  U,, u 7 ,  U,, U, ,  u4, u4 by: 

= U ,  + i v ,  u 2 + i u 2  m ( + l )  = m, 

CL-,,, = u,+iu,  J/-,,,= u4+iu4  m(-1)= m, 
(2.2) 

equation (2.1) is rewritten as a sytem of eight nonlinear partial differential equations 
for the functions u1 , . . . , u 4 :  

u l r  + u l x  - mlu2 = hR4v, 

- u l r  - u l x  - mlu2 = AR4u, 

u~~ - u ~ , ~  - mlul = -hR,u2 

- uzr + u2, - mlul  = -hR,u2 

u , ~  + u , ~  - m2u4 = -AR2v3 
- - ~3~ - m 2 ~ 4  = -hR*u, 

uqf - u4x - m2u3 = AR,v4 

- ~ 4 r + t 4 , - m 2 ~ 3 = A R I ~ q  

with Ri = u f +  uf for i = 1, .  . . ,4 .  

by the differential 1 -forms: 
In order to calculate the symmetries we introduce the differential ideal I, generated 

a ( 1 )  = du,  - u,, d x - H ( 1 ,  1) d t  

a ( 2 ) = d u 1  - U,, d x -  H ( 1 , 2 )  d t  

a ( 3 ) = d u 2 - ~ 2 ,  d x - H ( 1 , 3 ) d t  

a ( 4 )  = d ~ 2  - ~2~ dx  - H (  1,4)  d t  

a(S)=dUj-Uj, d x - H ( l , S )  d t  

a ( 6 )  = d q  - u , ~  dx - H ( 1 , 6 )  d t  

a (7)=du4-u4 ,  d x - H ( 1 , 7 )  d t  

a ( 8 ) = d ~ ~ - u ~ ~  d x - H ( 1 , 8 )  dt. 

(2.4) 

The functions H(1, 1) to H ( 1 , 8 )  are obtained by solving the equations (2.3) for 
u l f ,  . . . , u4f.  The remaining variables x, t ,  u1 , . . . , u4, u l x r  . . . , ulX are now independent. 
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A useful property of the equations is that they allow a grading: 

deg(x) = deg( t )  = -2 

deg(u,) = . . . = deg(ua) = 1 

deg(m,) = deg(m,) = 2 

eeg( u l x )  = . . . = deg( u4,) = 3 

deg(8,) = deg(d,) = 2 

deg(d,,) = deg(d,) = -1 
(2.5) 

deg(d,,%) = deg(d,,) = -3. 

We can restrict our attention to look for homogeneous symmetries, because a vector 
field is a symmetry if and only if its homogenous parts are symmetries. 

When looking for Lie-Backlund transformations the differential ideal D'( I) is 
generated by the differential 1-forms (2.4) and their Lie derivatives with respect to the 
total partial derivative vector fields D, and D, up to order r. For first-order Lie- 
Backlund transformations this means that D 1 ( I )  is generated by CY( 1) to a (8)  and: 

a (9 )  = dulx - ulXX dx - H(2, 1) d t  

CY( 10) = dulx - u , ~ . ,  dx - H(2,2)  d t  
~ ~ ( 1 1 )  = duzx - uZxx dx-H(2 ,3 )  d t  
CY ( 12) = duzx  - uZXX dx - H ( 2,4) d t 
~ ~ ( 1 3 ) = d u , , - ~ , , , d x - H ( 2 , 5 ) d t  

CY ( 14) = d ~3~ - ~3~~ dx - H (  2,6) d t 

(Y ( 15) = dud, - uaXX dx - H(2,7)  d t  

C Y ( ~ ~ ) = ~ U ~ ~ - U ~ ~ , ~ ,  d x - H ( 2 , 8 ) d t  
where H ( 2 , l )  to H(2,8)  are obtained by differentiating H(1, *) with respect to x. 

The several Lie-Backlund transformations already found [ 101 form a direct 
sum of two commuting algebras (denoted + and -) and are reflected in the following 
table 1: 

Table 1. Lie algebra of local symmetries. 

+ I -  : */: 

/* /+ Y i 0 , O J  

*\:\* : *\: 
Y*(1.-2J 

degree 4 

degree 2 

degree 0 

degree 2 

degree 4 

Symmetries in a given row of table 1 have the same degree towards the grading. 
This degree is minimal for the row with the (two) point symmetries Y'(0,O) and 
increases in both directions by two degrees per row. 

Each symmetry shown is a homogeneous polynomial in the variables x and t.  In 
a column the several symmetries have the same degree with respect to the variables x 
and t. The colum Y*(i, *) contains the symmetries with degree i. In particular the 
columns Y*(O, *) are independent of x and t and the columns Y * ( l ,  *) are linear in 
x and t. 
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Lie-Backlund transformations with the same order are connected by lines. The 
precise forms of these symmetries tend to be rather massive. At this moment we only 
mention: 

Y+(o, 0) = -~,a,, + u,a,, - v,au2+ u2a, 

Y - (0 ,O)  = -v3au3+ u3a,+ u4d,,+ u4a, 

Y+(O, -1) =r[-Av,(R,+ R4)  - m,v2+2u,,]a,,+f~Au,(R3+ R4)+ mlu2+2ulx]aL.I 

- ;m I v,a u2 + + m , U , a - ;A u3 R , a u1 + $A U ,  R , a - ;A v4 R , a ,, + f A u4 R a 
Y ' ( 0 , l )  = fm,u,d,, -fm,u,a,, +f[-Au2( R3+ R4)  + m l u ,  + 2 ~ ~ ~ 1 8 , ~  

+ ~ [ A U , ( R ~ + R ~ ) - ~ ~ U ~  +2u2,1a, 
(2.7) 

- f A v 3  R2au3 -fAu3 R2a,, -',A4u4R,a,, + tAu4R2aV4 

Y-(O, - 1 )  =~hvlR3aU, -fAu,R,au,+fAu~R3aU2 

-;Au2R3a,,+~[Au3(RI + R,) - m 2 ~ 4 + 2 ~ 3 x ] a u 3  

+ ' , [ - A u ~ (  R I  + R,) + m2u4+ 2 ~ ~ ~ ] a ~  -;m2~,dU4+fm2u3a, 

+f[Au4( R I  + R,) + m2v3 + 2u4,]a.,+',[ -Au4( R ,  + R2)  - m2u3 + 2u4x]aV,.  

Y-(O, 1) = f Au, R4a ,, - {Au, R4a + f A u2 R4a - f Au2 R4a v2 + f m,u4a ,, - f m2 u4a L, 

The 'symmetry' in this scheme can easily be explained by the following two discrete 
symmetries for (2.3): 

a: U ,  % U 3  7 :  U ,  * U 2  

U1 * U 3  Ul % U, 

U 2  % U 4  U 3  fs U 4  

U, fs U4 U 3  * U4 
m, fs mz x +  -x 

A + - A  A + -A. 

Physically (T denotes the exchange of the two particles. Whenever V is a symmetry 
of (2 .3) ,  then a( V )  and r( V )  are symmetries. We have 

U (  Y+( i, j ) )  = Y-(  i, j )  

7( Y*( i, j ) )  = Y*( i, - j )  a2 = T2 =id. 

3. Non-local symmetries 

A Lagrangian of (2.3) is given in [lo]. By means of variational symmetries we are 
able to find conservation laws. Vibrational symmetries V have the property [ 3 ] :  

p r ( n )  V (  L) + L DIV( 6) = 0 (3.1) 
where 6' and t2 are the components respectively for d, and a,. 

are zero, and therefore the condition reduces to: 
Because we are looking for vertical vector fields the components 5' and t2 and t2 

pr '" 'V(L)  = O .  (3.2) 
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Variational symmetries give rise to conserved currents. These can be found using 
Noethers theorem. In the case of Y+(O, 0) and Y-(O, 0) we have the differential forms: 

( R ,  + R,) d x +  ( - R I  + R2) dr 

( R , + R , ) d x + ( - R , + R , ) d t  
(3.3) 

with the property that the exterior derivatives are in the differential ideal described by 
the differential forms. These conserved currents give rise to non-local variables p, and 
p2 given by 

PIX = RI + R2 P l r = - R , + R 2  p2x = R3+ R 4  pzr=-R3+R4.  (3.4) 

Formally we can write: 

(R ,+R, )dx .  (3.5) 
-X 

P, = 1' ( R ,  + R2) dx 
--x 

In [ 111 new symmetries were found that include these two non-local variables. These 
are 

z+(o, 0) = u , d u , +  u l a ~ , +  u 2 a u , + ~ 2 ~ , + ~ p 1 ( - ~ 3 a u , + u 3 a , , - u 4 a u 4 +  U4du4)+2Plapl 
(3.6) 

Z-(O, 0) = u3au3 + u3a, + u4aU4+ u4a,+ Ap2( uldu, - U,&, - uldL, + u2aU2 - u,a,) + 2p2a,. 

The four symmetries Y'(0, *l) turned out to be divergent variational symmetries, 
meaning that 

pr"' V( L )  = DIV( B )  (3.7) 

for some B. The theorem of Noether is applicable to these kinds of symmetries and 
leads to four conserved currents. Analogously to the method described above we 
introduce four new variables p3, p4, p5 and p6. We have 

P3r =fA ( R I +  R 2 ) R 4 -  u4u4x+ U4u4.x 

p3x R2)R4+ m2(u3u4+u3u4)-u4u4x+u4u4x 

P41 =tA + R2)R3- u3u3x + u3u3x 

So for example 

~ ~ = ~ - ~ ( f A ( R ~ + R 2 ) R , + m 2 ( u , u 4 + ~ 3 ~ ~ ) - u ~ u 4 ~ + v , u 4 ~ )  dx. (3.8a) 

Now we can consider the equations (2.3), (3.4) and (3.8) as a new system of differential 
equations which is closely related to the original system, because any solution of (2.3) 
immediately extends to a solution of the combined system. Our purpose is to find 
symmetries for this larger system of differential equations. We denote the extended 
system by A. 
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We expect the system A to have (new) first-order Lie-Backlund transformations, 
as a direct generalisation of the symmetries (3.7) found by adding non-local variables 
resulting from Y*(O, 0). 

In order to look for these transformations we introduce the exterior differential 
system Z,, describing A defined on the jet bundle with coordinate functions x, t ,  
U ] ,  . . . , v 4 , p 1 , .  . . , p 6 ,  u , ~ , . .  . , vqi. generated by the differential forms (2.4), (2.6) and 

~ ~ ( 1 7 ) = d p ~ - p ~ , d x - p , ,  d t  

(3.9) 

In these equations pix, p,, ,  . . . , p h ,  P6t are not independent variables, but defined by 
(3.4) and (3.8). The exterior derivatives of a ( 1 )  to a(22) are in ZA by definition. The 
non-local variables have the following grading: 

deg(pl)  = deg(pJ  = 0 

deg( p3) = . . . = deg( p 6 )  = 2 

deg(d,,) = deg(d,) = 0 

deg(d,,) = . . . = deg(d,) = -2. 
(3.10) 

The symmetries we are looking for are assumed to have the following properties: (i) 
independent of x and t ;  (ii) degree 2; and (iii) linear in p 3 ,  p 4 ,  p 5  and p6 so that they 
will have the same grading as the symmetries Y'(0, *l). As a consequence of the 
assumption we know that a vector field acting as a symmetry has the form: 

= p3s3 +p4S4+pSs5 +p6s6 + (3.11) 

where S3,. . . , s6 and R are vector fields independent of p 3 , .  . . , p6. Due to the fact 
that a,, . . . , d, are symmetries, it is easy to see that S3, . . . , s6 in (3.1 1) are Lie-Backlund 
transformations. Therefore we specify these vector fields as combinations of earlier 
found symmetries with degree zero. These earlier found symmetries are Y'(0,O) and 

Now, we specified V in (3.11) and require (1.3) to hold with r =  1. We obtain a 
system of 16 partial differential equations for the components of the vector field V, i.e. 

Z'(0,O). 

Z = ( a ( l ) , .  . . , a ( S ) , d a ( l ) ,  . . . , d a ( 8 ) )  

and 

D ' ( I , P I , . . . , P ~ ) = ( ~ ( ~ )  , . . . ,  a (22) ,da ( l )  , . . . ,  da(22)). 

In these computations we made essential use of the grading in the following way. 
All the variables, with the exception of x, f, p ,  , p , ,  have a strict positive grading. For 
the components of V we choose to look for polynomials in these variables and the 
constants m ,  and m , .  The admission of only homogeneous terms in the polynomial 
effectively restricts the number of terms. We used this technique several times and 
thus cannot be sure to find all the symmetries satisfying (i)  and (ii). After a huge 
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computation we found four new symmetries. They are given by: 

Z+(O, -1) =+[-Au,(R3+ R4) - ~1~2-2v l ,x ]du ,  
+ ;[-A U ,  ( R3 + R,)  - m I u2 + 2 U I xld,, - t m u ,auz - t m u,a,, 

+ Ap6(U3au, -  u3a,+ U 4 a u 4 -  U 4 a a 4 )  

Z + (  0, + 1) = tm, u2d,, + tm, v2dUl + t[ -Au2( R3 + R4) + m, ul - 2 ~2~ la,, 
+ff[-Au2(R3 + R,) + m,v, + 2u2,]d,, 

(3.12) + ~ p d v ~ a ~ , -  u3a,+ ~ ~ a ~ ~ - ~ ~ a ~ ~ )  
z-(o, -1) = - ~ p ~ ( ~ , a , ,  - u,a,, + v2auz - U ~ ~ J  

+ $ [ - A u 3 ( R , + R 2 )  - m2u4-2v3.;]au3 

+t[hu,(R,+ R2) - m Z ~ 4 + 2 u 3 , ] ~ , - f m 2 u 3 ~ , 4 - ~ m Z v 3 ~ L a  

+~m2u,a , ,+~m2u,a ,+~[Au4(R,  + R2) + m2u3 -2u4x]au4 
z-(o, + I )  = hp , (~ ,a , ,  - u,a,, + u2aU2 - ~ ~ d ~ ~ )  

+ ~ [ A V ~ ( R I + R Z ) +  mzU3+2U4~~lfi&~,. 
The components of apl, . . . , ape are not calculated here, but are given in appendix I of 
[121. 

4. The Lie algebraic structure of the non-local symmetries 

In section 3 we obtained, by the introduction of non-local variables p 3 ,  . . . , p6 associated 
with the conserved densities F(0, *l)  (cf [lo]), four new non-local first-order Lie- 
Backlund transformations. 

By prolongations of the local and non-local symmetries we are able to determine 
the Lie algebra structure. 

Let 

v = q5"'au, + . . . + 4"4aa, (4.1) 
be a vertical vector field. The prolongation formulae regarding the local variables are 
given in [3], for example 

x (  4 (4.2) ~ " I Y  = D 

Now let p be a non-local variable, then the ap components are determined from the 
invariance of (3.4) or (3.8). Once we have the prolongation of the vector fields we are 
able to compute the a,, , . . . , av4 components of their Lie brackets. The components of 
the prolongation of the vector fields are given in appendix I of [12]. 

As a first result in the computations of Lie brackets of the local and non-local 
symmetries we obtained that each vector field denoted commutes with any vector field 
denoted by '-'. Morover 

[ Y'( 1, *l) ,  Z"(0, O)] = 0 

[ Y+(l ,  - l ) ,  Z+(O, -1)] = Z+(O, -2) 

[ Y+(I,  -I) ,  z+(o, +I ) ]  = -$m:Z+(O, 0) 

[ Y+(1, + l ) ,  Z+(O, -1) = +am:Z+(O, 0) 

[ Y+(l ,  + l ) ,  Z+(O, +1)] = Z+(O, +2) 

(4.3) 

(4.4) 
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and 

Explicit formulae for the new vector fields Z'(0, *2) are given in appendix I of [12] 
and include non-local variables associated with the conserved functionals F( YZ2) 
given in [lo]. 

Summarising these results we conclude that the action of Y'(1, * l )  on Z'(0, * l )  
constitutes hierarchies of non-local symmetries of the Federbush model. 

We compute the Lie bracket of Y'(2, 0 ) [ ' O 1  and Z'(0, * l )  which results in 

[ Y+(2, O), Z+(O, -1)] = Z+(l, -1) 

[ Y'(2, O), Z+(O, l ) ]  = Z + ( l ,  +1) (4.6) 

where Z'( 1, * 1) are defined by 

~ ' ( 1 ,  -1) =2(-x+ ~ )z+(o ,  - 2 ) + f m : ( x + t ) ~ + ( 0 ,  0)+(hU1R34+m1u2-2u, , )a , ,  

+ ( - A U l R 3 4 -  mlU2 - 2U1,)6',, - $ A (  U 3 d U , -  U 3 a y +  U4ao4)K+1 ( 4 . 7 a )  

z+(I,  + I )  = 2 ( + x +  ~)z'(o, +2)+fm:(x- t)Z+(O, 0 ) + ( ~ ~ 2 ~ ~ 4 - m , o ~  - 2 ~ ~ ~ ) ~ ~ ~  

+ ( -Au2R34 - m, U ,  - 2u2,)a4 - f h  ( u3d, - uod, + u4au4 - u4a,4)K:1 

where K I ,  are defined by 

K f ,  = 8 Ix F( Y+(O, -2)) - m: I' I' R Y'(0,O)) 

I xF (  Y+(O, +2)-m: jx F( Y+(O, 0)). 

(4 .7b )  

K T ,  = 8  

Equation (4 .7)  reflects the fact that Yf(2, 0) constructs a (x, t)-dependent hierarchy 
Z+( 1, *) from Z+(O, *) by action of the Lie bracket. Again the result is similar to the 
results obtained in [ 101 for the Y*(*, *) vector fields. So, we have no formal proof of 
these facts. 

We end this section with the following conjectures on the existence of non-local 
symmetries. 

(i)  The non-local symmetries are ordered in a plane in a way analogous to the 
local symmetries Y*(*, *) (table 1). 

(ii) The local symmetries Y*(l, *l), Y'(2,O) act as recursion operators on the 
non-local symmetries in a way similar to the action in the Y(*, *) plane [lo]. 

Conclusion 

From the construction of four first-order non-local symmetries we probably generate 
an infinite number of hierarchies of non-local symmetries Y*(*, *), created by the 
action of the vector fields Y"(1, * l )  and Y'(2,O). 
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